

Systèmes de Traitements Electroniques

Projet APP2

Florent Goutailler

20 décembre 2023

Sommaire

- 1. Caractérisation du signal audio analogique
- 2. Ajout d'une tension de décalage
- 3. Plage de tensions analogiques acceptée par le PSoC ?
- 4. Choix du Convertisseur Analogique-Numérique (CAN ou ADC)
- 5. Nécessité d'une amplification du signal audio analogique ?
- 6. Mise en forme du signal ?

Transmission numérique audio par fibre optique Chaîne d'émission

Première approche « naïve »

Sommaire

- 1. Caractérisation du signal audio analogique
- 2. Ajout d'une tension de décalage
- 3. Plage de tensions analogiques acceptée par le PSoC ?
- 4. Choix du Convertisseur Analogique-Numérique (CAN ou ADC)
- 5. Nécessité d'une amplification du signal audio analogique ?
- 6. Mise en forme du signal ?

Caractérisation temporelle du signal audio

Caractérisation temporelle du signal audio

Caractérisation fréquentielle du signal audio

Caractérisation fréquentielle du signal audio

Normal Scope 6							- 🗆 ×
<u>Fichier M</u> odifier <u>V</u> ues <u>M</u> esures <u>O</u> utils <u>A</u> ide							
∧ 」 山山山 ジ 谷 (49 kHz マ ト (32 de 32	▶ Ø ◀ x1	🕨 🖉 🥐 🔁 🕨	v 🧠				pico
A Automatique V C.C. V B A Arrêt V D	c.c. 👻 🕅						Technology
•							
Dépassement de plage de canal dBm							
10,0	Emay du	signal	?	; 			
	max du	Jightan	-				
-0,039	Critère	à utilise	er ?	 	 	 	
Make, 1							
-11,04							
		- - 					
-22,04		· · · · · · · · · · · · · · · · · · ·			- <u>-</u>		
" PINKYANA Addie waa die een stati							
-33,04							
		1 1 1 1					
-44,04				*			(M).
eros la							l m
-55,04	ATHING AND WALLAND	March Markellander Million	A A A A A A A A A A A A A A A A A A A	in marily marked with the state	Will Alexander and the sale	with the later the rail	AN LIMAN
-66.04		a for the section of		a na she she she a ta ta ta ta ta		and the second second to	, tradition
00,04		8 8 8 8 8	8 8 8 8				
-77 04	 	1 1 1 1	 	 	1 1 1 1		
-88.00			, , , ,	<u>.</u>			
0,0 5,0 10,0 15	5,0 20	0,0 25	i,0 3	0,0 3	35,0 4	0,0 4	5,0

Caractérisation fréquentielle du signal audio

Cahier des charges Signal audio analogique

- Largeur du spectre : 0 à 12KHz
- Théorème de Shannon ?
- Valeurs du signal : $-1V \rightarrow 1V$
- Nécessité d'une tension de décalage ?

Transmission numérique audio par fibre optique Chaîne d'émission

Sommaire

- 1. Caractérisation du signal audio analogique
- 2. Ajout d'une tension de décalage
- 3. Plage de tensions analogiques acceptée par le PSoC ?
- 4. Choix du Convertisseur Analogique-Numérique (CAN ou ADC)
- 5. Nécessité d'une amplification du signal audio analogique ?
- 6. Mise en forme du signal ?

Tension de décalage

A-t-on le choix ?

Tension de décalage déjà présente sur la **carte développement**

Entrées/sorties :

- BNC1 / jack
- BNC2

Tension de décalage

Raisonnement qualitatif :

- Rôle de C_1 ?
- Valeur de V₁?
- Rôle de C₂ ?
- Rôle de la diode ?

Calculs :

Tension de décalage Simulation LTSpice

Entrée : signal sinusoïdal, V_{moy}=0V, V_{CC}=2V, f=12KHz

Montage fonctionnel?

Tension de décalage

Mesure avec une sonde (Picoscope)

Entrée : V_{cc}=2V V_{moy}=21mV

Sortie : $V_{cc}=1,94V$ $V_{moy} = 1,24V$ \neq $V_{moy} = 2,5V$

Raison?

Tension de décalage

Mesure avec une sonde (Picoscope)

Cahier des charges Tension de décalage

- Largeur du spectre : 0 à 12KHz
- Théorème de Shannon : $f_e \ge 2.f_{max} \rightarrow f_e \ge 24 KHz$
- Valeurs du signal : $-1V \rightarrow 1V$
- Nécessité d'une tension de décalage :
- Plage de tension après décalage :

Transmission numérique audio par fibre optique Chaîne d'émission

Sommaire

- 1. Caractérisation du signal audio analogique
- 2. Ajout d'une tension de décalage
- 3. Plage de tensions analogiques acceptée par le PSoC ?
- 4. Choix du Convertisseur Analogique-Numérique (CAN ou ADC)
- 5. Nécessité d'une amplification du signal audio analogique ?
- 6. Mise en forme du signal ?

Project Global Ressources RefMux

- BandGap ?
- Vdd/2 ?
- P2[4] et P2[6] ?
- Influences de ce réglage ?
 - AGND : masse des blocs analogiques
 - RefLo -> RefHi : plage de tension d'entrée des blocs analogiques
- Réglage adapté ?

•

.

Power Setting [Vcc / SysClk frei 5.0V / 24MHzCPU_ClockSysClk/132K_SelectInternalPLL_ModeDisableSleep_Timer512_HzVC1= SysClk/N4VC2= VC1/N2VC3 SourceSysClk/1VC3 Divider1SysClk SourceInternalSysClk *2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)VGndBypass(Vdd/2)+/-(Vdd/2)Qp-Amp Bias(Vdd/2)+/-(Vdd/2)Aginf_PowerBandGap+/-BandGapOp-Amp Bias(Vdd/2)+/-BandGapA_Buff_Power(1.6 BandGap)+/-(1.6 BandGap)SwitchModePump(2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-BandGapP2[4]+/-P2[6]P2[4]+/-P2[6]	51	obal Resources - pdproject1	▼ 무	×
CPU_ClockSysClk/132K_SelectInternalPLL_ModeDisableSleep_Timer512_HzVC1= SysClk/N4VC2= VC1/N2VC3 SourceSysClk/1VC3 Divider1SysClk SourceInternalSysClk*2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)QP-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-P2[6]		Power Setting [Vcc / SysClk free	5.0V / 24MHz	
32K_Select Internal PLL_Mode Disable Sleep_Timer 512_Hz VC1= SysClk/N 4 VC2= VC1/N 2 VC3 Source SysClk/1 VC3 Divider 1 SysClk Source Internal SysClk*2 Disable No Analog Power SC On/Ref High Ref Mux (Vdd/2)+/-(Vdd/2) AGindBypass (Vdd/2)+/-(Vdd/2) Op-Amp Bias AudGap+/-BandGap A_Buff_Power BandGap+/-BandGap SwitchModePump (2 BandGap)+/-(1.6 BandGap) Trip Voltage [LVD (SMP)] (2 BandGap)+/-P2[6] LVDThrottleBack P2[4]+/-BandGap P2[4]+/-P2[6] P2[4]+/-P2[6]		CPU_Clock	SysClk/1	
PLL_Mode Disable Sleep_Timer 512_Hz VC1= SysClk/N 4 VC2= VC1/N 2 VC3 Source SysClk/1 VC3 Divider 1 SysClk Source Internal SysClk*2 Disable No Analog Power SC On/Ref High Ref Mux (Vdd/2)+/-(Vdd/2) AGndBypass (Vdd/2)+/-(Vdd/2) Op-Amp Bias (Vdd/2)+/-(Vdd/2) A_Buff_Power BandGap+/-BandGap SwitchModePump (1.6 BandGap)+/-(1.6 BandGap) Trip Voltage [LVD (SMP)] (2 BandGap)+/-P2[6] LVDThrottleBack P2[4]+/-BandGap P2[4]+/-P2[6] P2[4]+/-P2[6]		32K_Select	Internal	
Sleep_Timer512_HzVC1= SysClk/N4VC2= VC1/N2VC3 SourceSysClk/1VC3 Divider1SysClk SourceInternalSysClk*2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)AGindBypass(Vdd/2)+/-(Vdd/2)Op-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-BandGapP2[4]+/-P2[6]P2[4]+/-P2[6]		PLL_Mode	Disable	
VC1= SysClk/N 4 VC2= VC1/N 2 VC3 Source SysClk/1 VC3 Divider 1 SysClk Source Internal SysClk*2 Disable No Analog Power SC On/Ref High Ref Mux (Vdd/2)+/-(Vdd/2) AGindBypass (Vdd/2)+/-(Vdd/2) Op-Amp Bias (Vdd/2)+/-(Vdd/2) A_Buff_Power BandGap+/-BandGap SwitchModePump (2 BandGap)+/-(1.6 BandGap) SwitchModePump (2 BandGap)+/-P2[6] LVDThrottleBack P2[4]+/-BandGap Watchdog Enable P2[4]+/-P2[6]		Sleep_Timer	512_Hz	
VC2= VC1/N2VC3 SourceSysClk/1VC3 Divider1SysClk SourceInternalSysClk*2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)AGndBypass(Vdd/2)+/-BandGapOp-Amp Bias(Vdd/2)+/-BandGapA_Buff_PowerBandGap+/-BandGapSwitchModePump(2 BandGap)+/-(1.6 BandGap)SwitchModePump(2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		VC1= SysClk/N	4	
VC3 Source SysClk/1 VC3 Divider 1 SysClk Source Internal SysClk*2 Disable No Analog Power SC On/Ref High Ref Mux (Vdd/2)+/-(Vdd/2) AGndBypass (Vdd/2)+/-BandGap Op-Amp Bias (Vdd/2)+/-(Vdd/2) BandGap+/-BandGap (1.6 BandGap)+/-(1.6 BandGap) SwitchModePump (2 BandGap)+/-BandGap Trip Voltage [LVD (SMP)] (2 BandGap)+/-P2[6] LVD ThrottleBack P2[4]+/-BandGap Watchdog Enable P2[4]+/-P2[6]		VC2= VC1/N	2	
VC3 Divider1SysClk SourceInternalSysClk*2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)AGndBypass(Vdd/2)+/-BandGapOp-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)SwitchModePump(2 BandGap)+/-BandGapTrip Voltage [LVD (SMP)](2 BandGap)+/-P2[6]LVD ThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		VC3 Source	SysClk/1	
SysClk SourceInternalSysClk*2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)AGndBypass(Vdd/2)+/-BandGapOp-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		VC3 Divider	1	
SysClk*2 DisableNoAnalog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)AGndBypass(Vdd/2)+/-BandGapOp-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		SysClk Source	Internal	
Analog PowerSC On/Ref HighRef Mux(Vdd/2)+/-(Vdd/2)AGndBypass(Vdd/2)+/-BandGapOp-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-P2[6]LVDThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		SysClk*2 Disable	No	
Ref Mux (Vdd/2)+/-(Vdd/2) ✓ AGndBypass (Vdd/2)+/-BandGap ✓ Op-Amp Bias (Vdd/2)+/-(Vdd/2) ✓ A_Buff_Power BandGap+/-BandGap ✓ SwitchModePump (1.6 BandGap)+/-(1.6 BandGap) ✓ Trip Voltage [LVD (SMP)] (2 BandGap)+/-P2[6] ✓ LVDThrottleBack P2[4]+/-BandGap ✓ Watchdog Enable P2[4]+/-P2[6] ✓		Analog Power	SC On/Ref High	
AGndBypass(Vdd/2)+/-BandGapOp-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-BandGapLVDThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		Ref Mux	(Vdd/2)+/-(Vdd/2)	~
Op-Amp Bias(Vdd/2)+/-(Vdd/2)A_Buff_PowerBandGap+/-BandGapSwitchModePump(1.6 BandGap)+/-(1.6 BandGap)Trip Voltage [LVD (SMP)](2 BandGap)+/-BandGapLVDThrottleBackP2[4]+/-BandGapWatchdog EnableP2[4]+/-P2[6]		AGndBypass	(Vdd/2)+/-BandGap	
A_Buff_Power BandGap+/-BandGap SwitchModePump (1.6 BandGap)+/-(1.6 BandGap) Trip Voltage [LVD (SMP)] (2 BandGap)+/-BandGap LVDThrottleBack P2[4]+/-BandGap Watchdog Enable P2[4]+/-P2[6]		Op-Amp Bias	(Vdd/2)+/-(Vdd/2)	
SwitchModePump (1.6 BandGap)+/-(1.6 BandGap) Trip Voltage [LVD (SMP)] (2 BandGap)+/-P2[6] LVDThrottleBack P2[4]+/-BandGap Watchdog Enable P2[4]+/-P2[6]		A_Buff_Power	BandGap+/-BandGap	
Trip Voltage [LVD (SMP)] (2 BandGap)+/-P2[6] LVDThrottleBack P2[4]+/-BandGap Watchdog Enable P2[4]+/-P2[6]		SwitchModePump	(1.6 BandGan)+/-(1.6 BandGan	
LVDThrottleBack P2[4]+/-BandGap P2[4]+/-P2[6]		Trip Voltage [LVD (SMP)]	(2 BandGap)+/-P2[6]	
Watchdog Enable P2[4]+/-P2[6]		LVDThrottleBack	P2[4]+/-BandGap	
		Watchdog Enable	P2[4]+/-P2[6]	

Project Global Ressources RefMux

- Ve = -1V -> 1V
- Après décalage (2,5V) : 1,5 -> 3,5V
- Amplificateur de gain 2

• Résultat?

GI	obal Resources - pdproject1	+ ∓ ∓ X
	Power Setting [Vcc / SysClk free	5.0V / 24MHz
	CPU_Clock	SysClk/1
	32K_Select	Internal
	PLL_Mode	Disable
	Sleep_Timer	512_Hz
	VC1= SysClk/N	4
	VC2= VC1/N	2
	VC3 Source	SysClk/1
	VC3 Divider	1
	SysClk Source	Internal
	SysClk*2 Disable	No
	Analog Power	SC On/Ref High
	Ref Mux	BandGap+/-BandGap 🗸
	AGndBypass	(Vdd/2)+/-BandGap
	Op-Amp Bias	(Vdd/2)+/-(Vdd/2)
	A_Buff_Power	BandGap+/-BandGap (1.6.RandGap); / (1.6.RandGap)
	SwitchModePump	(2 BandGap)+/-BandGap
	Trip Voltage [LVD (SMP)]	(2 BandGap)+/-P2[6]
	LVDThrottleBack	P2[4]+/-BandGap
	Watchdog Enable	P2[4]+/-P2[6]

Project Global Ressources

Project Global Ressources RefMux

- Ve = -1V -> 1V
- Après décalage (2,5V) : 1,5 -> 3,5V
- Amplificateur de gain 2
 - (1,5 AGND) * 2 + AGND = 1,7V
 - (3,5 AGND) * 2 + AGND = 5,7V
- Résultat?

GI	obal Resources - pdproject1		÷	P	×
	Power Setting [Vcc / SysClk free	5.0V / 24MHz			
	CPU_Clock	SysClk/1			
	32K_Select	Internal			
	PLL_Mode	Disable			
	Sleep_Timer	512_Hz			
	VC1= SysClk/N	4			
	VC2= VC1/N	2			
	VC3 Source	SysClk/1			
	VC3 Divider	1			
	SysClk Source	Internal			
	SysClk*2 Disable	No			
	Analog Power	SC On/Ref High			
	Ref Mux	BandGap+/-BandGap			\sim
	AGndBypass	(Vdd/2)+/-BandGap			
	Op-Amp Bias	(Vdd/2)+/-(Vdd/2)			
	A Buff Power	BandGap+/-BandGap			
	SwitchModePump	(1.6 BandGap)+/-(1.6 BandGap) (2 BandGap)+/-BandGap			
	Trip Voltage [LVD (SMP)]	(2 BandGap)+/-P2[6]			
	LVDThrottleBack	P2[4]+/-BandGap			
	Watchdog Enable	P2[4]+/-P2[6]			

Erreur de raisonnement !

Cahier des charges RefMux

- Largeur du spectre : 0 à 12KHz
- Théorème de Shannon : $f_e \ge 2 f_{max} \rightarrow f_e \ge 24 KHz$
- Valeurs du signal : $-1V \rightarrow 1V$
- Nécessité d'une tension de décalage : $V_{offset} \ge 1V \rightarrow V_{offset} = 2,5V$
- Plage de tension après décalage : $1,5V \rightarrow 3,5V$
- Plage de tension en entrée du CAN : $0V \rightarrow 5V$

Transmission numérique audio par fibre optique Chaîne d'émission

Conversion Analogique Numérique Plage entrée ? (Mini-prog)

Conversion Analogique Numérique Plage entrée ? (Alimentation ext.)

Sommaire

- 1. Caractérisation du signal audio analogique
- 2. Ajout d'une tension de décalage
- 3. Plage de tensions analogiques acceptée par le PSoC ?
- 4. Choix du Convertisseur Analogique-Numérique (CAN ou ADC)
- 5. Nécessité d'une amplification du signal audio analogique ?
- 6. Mise en forme du signal ?

Conversion Analogique Numérique Choix du Convertisseur

100

Conversion Analogique Numérique Choix du Convertisseur

• Quantum du CAN ?

• Format des données ?

Conversion Analogique Numérique Fréquence de l'horloge

 $f_e = \frac{f_{CLK}}{4*32}$

Source de l'horloge ?

VC1, VC2 ou VC3

Conversion Analogique Numérique Erreurs DNL / INL

Conversion Analogique Numérique Choix du Convertisseur

• Quantum du CAN ?

•
$$q = \frac{V_{PE}}{2^n - 1} = \frac{5V}{255} \approx 19,6mV$$

- Résolution de la chaine d'acquisition ?
- R = q = 19,6mV
- Comment améliorer cette résolution ?
- Ajout d'un amplificateur :

• Nouvelle résolution ?

Conversion Analogique Numérique Filtre anti-repliement ?

- utilisation d'un CAN Sigma-Delta
- sur-échantillonnage : 32*fe
- filtre décimateur passe-bas
- connaissance précise du signal analogique d'entrée
- FAR facultatif

Cahier des charges Convertisseur Analogique-Numérique

- Largeur du spectre : 0 à 12KHz
- Théorème de Shannon : $f_e \ge 2.f_{max} \rightarrow f_e \ge 24KHz \rightarrow f_e = 26.8KHz$
- Valeurs du signal : $-1V \rightarrow 1V$
- Nécessité d'une tension de décalage : $V_{offset} \ge 1V \rightarrow V_{offset} = 2,5V$
- Plage de tension après décalage : $1,5V \rightarrow 3,5V$
- Plage de tension en entrée du CAN : $0V \rightarrow 5V$
- Nécessité d'une amplification $A = \frac{5}{2} = 2,5$

Transmission numérique audio par fibre optique Chaîne d'émission

Sommaire

- 1. Caractérisation du signal audio analogique
- 2. Ajout d'une tension de décalage
- 3. Plage de tensions analogiques acceptée par le PSoC ?
- 4. Choix du Convertisseur Analogique-Numérique (CAN ou ADC)
- 5. Nécessité d'une amplification du signal audio analogique ?
- 6. Mise en forme du signal ?

Programmable Gain Amplifier Choix des paramètres

 $V_{out} = A \cdot (V_e - V_{ref}) + V_{ref}$

- choix de l'amplification ?
- choix de V_{ref}?

~	,
~	,
~	,
~	,
^	
	£11
×	
🚽 🕂 🗙	
	Ī
\sim	
	1
	→ ₽ X

Programmable Gain Amplifier

Programmable Gain Amplifier

Programmable Gain Amplifier Choix des paramètres

 $V_{out} = A \cdot (V_e - V_{ref}) + V_{ref}$

- choix de l'amplification ?
- choix de V_{ref}?

Parameters - PGA_1		→ ₽ ×
Name	PGA_1	
User Module	PGA	
Version	3.2	
Gain	2.286	\sim
Input	48.00	~
Reference	24.00	
AnalogBus	16.00	
-	8.000	
	4 000	
	3 200	
	2.667	
	2.286	
	2.000	
	1.///	¥
rameters - PGA_1		→ ₽ X
Name	PGA_1	
User Module	PGA	
Version	3.2	
Gain	2.286	
Input	AnalogColumn_InputMUX_0	
Reference	VSS	\sim
AnalogBus	ACB01	
-	AGND	
	VSS	

Cahier des charges Convertisseur Analogique-Numérique

- Largeur du spectre : 0 à 12KHz
- Théorème de Shannon : $f_e \ge 2 f_{max} \rightarrow f_e \ge 24 KHz \rightarrow f_e = 26,8 KHz$
- Valeurs du signal : $-1V \rightarrow 1V$
- Nécessité d'une tension de décalage : $V_{offset} \ge 1V \rightarrow V_{offset} = 2,5V$
- Plage de tension après décalage : $1,5V \rightarrow 3,5V$
- Plage de tension en entrée du CAN : $0V \rightarrow 5V$

• Nécessité d'une amplification $A = \frac{5}{2} = 2,5 \rightarrow A = 2,286$ avec AGND = 2,5V

Transmission numérique audio par fibre optique Chaîne d'émission

 $0.2V \rightarrow 4.8V$

Mise en forme pour la transmission

Nécessité ?

- Où est le signal après la conversion ?
- Sous quelle forme ?
- Peut-on y avoir accès ?
- Caractéristiques de la fibre optique ?
- Nécessité d'un bloc
- Choix du protocole ?
- Justification du CAN 8 bits ?

Mise en forme pour la transmission Bloc TX8

Mise en forme pour la transmission Bloc TX8

Figure 2. TX8	Timing Diagram
Input Clock - 8X	
Bit Clock	
Load Buffer Reg (uProc Write Pulse)	
Buffer Register	$\begin{array}{c} \times \times$
Buffer Empty	
Buffer Empty Int	
Shift Register	\times χ <u>01011010</u> <u>00101101</u> 00010110 <u>00001011</u> <u>00000101</u> <u>00000010</u> <u>00000001</u> <u>00000000</u>
Tx Output	Start 0 1 1 0 1 0 Parity Stop
Tx Complete	
Data Clock Out	
=	

Mise en forme pour la transmission

Mise en forme pour la transmission Bloc TX8

Mise en forme pour la transmission Bloc TX8

Cahier des charges

Convertisseur Analogique-Numérique

- Largeur du spectre : 0 à 12KHz
- Théorème de Shannon : $f_e \geq 2.f_{max} \rightarrow f_e \geq 24 \textit{KHz} \rightarrow f_e = 26,8 \textit{KHz}$
- Valeurs du signal : $-1V \rightarrow 1V$
- Nécessité d'une tension de décalage : $V_{\textit{offset}} \geq 1V \rightarrow V_{\textit{offset}} = 2,5V$
- Plage de tension après décalage : $1,5V \rightarrow 3,5V$
- Plage de tension en entrée du CAN : $0V \rightarrow 5V$

• Nécessité d'une amplification $A = \frac{5}{2} = 2,5 \rightarrow A = 2,286$ avec AGND = 2,5V

• Nécessité d'un bloc serializer 8 bits : $D_b > 10 * fe = 268 kbits/s$

Transmission numérique audio par fibre optique Chaîne d'émission

Transducteur électrique optique

A-t-on le choix ?

- 660nm
- $D_{b_{max}} = 5MBits/s$

